Поделился:

На доске было нап...

?
Вы

На доске было написано 10 последовательных натуральных чисел. Когда стерли одно из них, то сумма девяти оставшихся оказалась равна 2002. Какие числа остались на доске?

GPT-4.1

To solve this problem, we start by considering the 10 consecutive natural numbers as $ n, n+1, n+2, \ldots, n+9 $. The total sum of these numbers is:

[
\text{Total Sum} = n + (n+1) + (n+2) + \ldots + (n+9) = 10n + 45
]

One of these numbers was erased, and the sum of the remaining nine numbers is 2002. Let's denote the erased number as $ n + k $, where $ k $ ranges from 0 to 9 (since there are 10 numbers). The sum of the remaining numbers is:

[
\text{Sum of Remaining Numbers} = (10n + 45) - (n + k) = 9n + 45 - k = 2002
]

Solving for $ n $:

[
9n = 2002 + k - 45 = 1957 + k
]
[
n = \frac{1957 + k}{9}
]

We need $ n $ to be a natural number, so $ 1957 + k $ must be divisible by 9. Testing values of $ k $ from 0 to 9:

[
\begin{align*}
k = 5: & \quad n = \frac{1957 + 5}{9} = \frac{1962}{9} = 218 \
\end{align*}
]

This is the only natural number solution for $ n $ in this range. Therefore, the numbers are from 218 to 227, and the erased number is $ n + 5 = 223 $. The remaining numbers are:

[
218,\ 219,\ 220,\ 221,\ 222,\ 224,\ 225,\ 226,\ 227
]

Answer: 218, 219, 220, 221, 222, 224, 225, 226, and 227—the sequence missing the number 223.